Abelian Conformal Field theories and Determinant Bundles

نویسندگان

  • Jørgen Ellegaard
  • Kenji Ueno
چکیده

The present paper is the first in a series of papers, in which we shall construct modular functors and Topological Quantum Field Theories from the conformal field theory developed in [TUY]. The basic idea is that the covariant constant sections of the sheaf of vacua associated to a simple Lie algebra over Teichmüller space of an oriented pointed surface gives the vector space the modular functor associates to the oriented pointed surface. However the connection on the sheaf of vacua is only projectively flat, so we need to find a suitable line bundle with a connection, such that the tensor product of the two has a flat connection. We shall construct a line bundle with a connection on any family of N pointed curves with formal coordinates. By computing the curvature of this line bundle, we conclude that we actually need a fractional power of this line bundle so as to obtain a flat connection after tensoring. In order to functorially extract this fractional power, we need to construct a preferred section of the line bundle. We shall construct the line bundle by the use of the so-called bc-ghost systems (Faddeev-Popov ghosts) first introduced in covariant quantization [FP]. The bc system have two anticommuting fields b(z), c(z) of conformal dimension j, 1− j, respectively, where j is an integer or half integer. In the case j = 1/2 a mathematically rigorous treatment was given in the paper [KNTY]. The case j = 1/2 corresponds to the study of the determinant bundle of half-canonical line bundles on smooth curves, i.e. on compact Riemann surfaces. Since we cannot define the half-canonical line bundles for curves with nodes, whose normalization has at least two components, the boundary behavior of the sheaf of vacua is complicated [KSUU]. Therefore, in the present paper we shall consider the case j = 0, following the ideas of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A / 0 30 41 35 v 2 8 N ov 2 00 6 Abelian Conformal Field Theory and Determinant Bundles ∗

Following [KNTY] we study a so-called bc-ghost system of zero conformal dimension from the viewpoint of [TUY] and [U2]. We show that the ghost vacua construction results in holomorphic line bundles with connections over holomorphic families of curves. We prove that the curvature of these connections are up to a scale the same as the curvature of the connections constructed in [TUY] and [U2]. We...

متن کامل

N ov 2 00 6 Abelian Conformal Field Theory and Determinant Bundles

Following [KNTY] we study a so-called bc-ghost system of zero conformal dimension from the viewpoint of [TUY] and [U2]. We show that the ghost vacua construction results in holomorphic line bundles with connections over holomorphic families of curves. We prove that the curvature of these connections are up to a scale the same as the curvature of the connections constructed in [TUY] and [U2]. We...

متن کامل

What Is the Jacobian of a Riemann Surface with Boundary?

We define the Jacobian of a Riemann surface with analytically parametrized boundary components. These Jacobians belong to a moduli space of “open abelian varieties” which satisfies gluing axioms similar to those of Riemann surfaces, and therefore allows a notion of “conformal field theory” to be defined on this space. We further prove that chiral conformal field theories corresponding to even l...

متن کامل

D-brane Conformal Field Theory and Bundles of Conformal Blocks

Conformal blocks form a system of vector bundles over the moduli space of complex curves with marked points. We discuss various aspects of these bundles. In particular, we present conjectures about the dimensions of sub-bundles. They imply a Verlinde formula for non-simply connected groups like PGL(n, C). We then explain how conformal blocks enter in the construction of conformal field theories...

متن کامل

Effective Chern-Simons Theories of Pfaffian and Parafermionic Quantum Hall States, and Orbifold Conformal Field Theories

We present a pure Chern-Simons formulation of families of interesting Conformal Field Theories describing edge states of non-Abelian Quantum Hall states. These theories contain two Abelian Chern-Simons fields describing the electromagnetically charged and neutral sectors of these models, respectively. The charged sector is the usual Abelian Chern-Simons theory that successfully describes Laughl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009